- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Apostolos, Alexis J (1)
-
Bohr, Lindsey L. (1)
-
Bollinger, Kevin W (1)
-
Ellermeier, Craig D (1)
-
Ellermeier, Craig D. (1)
-
Gakhar, Lokesh (1)
-
Hastie, Jessica L. (1)
-
Helm, Richard F (1)
-
Houtman, Jon C. (1)
-
Müh, Ute (1)
-
Ocius, Karl L (1)
-
Pires, Marcos M (1)
-
Popham, David L (1)
-
Weiss, David S (1)
-
Williams, Kyle B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Burkholder, William F. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created byL,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogenClostridioides difficile,about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability inC. difficile. We also show thatC. difficilehas five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non–C. difficileVanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability inC. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs inC. difficilemakes them potential targets for antibiotics that killC. difficileselectively.more » « less
-
Hastie, Jessica L.; Williams, Kyle B.; Bohr, Lindsey L.; Houtman, Jon C.; Gakhar, Lokesh; Ellermeier, Craig D. (, PLOS Genetics)Burkholder, William F. (Ed.)
An official website of the United States government
